
Appendices to the Neural Lyapunov Control paper.

Appendix A: Further Details on Examples in Section 3

Example 1. In the double inverted pendulum model for n-link planar robot balancing (Section 4),
the learned control functions are

u1(x) = −39.51138θ1 − 20.1297θ2 − 21.4826θ̇1 − 10.0516θ̇2

u2(x) = −18.2287θ1 − 19.143θ2 − 9.62847θ̇1 − 10.480879θ̇2
,

and the initial solution from LQR solution is

u∗
1(x) = −49.524906θ1 − 16.953148θ2 − 17.04338θ̇1 − 10.051599θ̇2

u∗
2(x) = −16.119429θ1 − 19.143θ2 − 9.2905θ̇1 − 6.6695θ̇2

.

Figure 5(d) shows that the learned results give much better performance. In fact, the differences
contribute to the improvement in region of attraction by three times.

Appendix B: Experiments

We demonstrate that the proposed methods can find Lyapunov functions and control functions on
various nonlinear robotics control problems.

Inverted pendulum. The inverted pendulum is one of the most standard nonlinear control problem
for testing different control methods. This system has two state variables θ, θ̇ and one control input u.
θ and θ̇ represent the angular position from the inverted position and angular velocity. The system
dynamics can be described as

θ̈ =
mg` sin (θ) + u− 0.1θ̇

m`2
(1)

Using constants g = 9.81, m = 0.15 and ` = 0.5, our learning procedure finds the following neural
Lyapunov function: V = tanh(W2 tanh(W1x+B1) +B2), where x = [θ θ̇]T and

W1 =

[
−1.1751 0.0265 0.0439 −0.5518 −0.0067 0.4446
0.0288 −0.0007 −0.0030 −0.0348 −0.0067 0.2599

]T
,

W2 =
[
0.6047 −0.6942 −1.1177 −1.1330 0.7800 −0.2621

]
,

B1 =
[
−1.2251 −0.8158 −0.5308 0.8925 0.9339 1.0895

]
and B2 =

[
0.1592

]
,

and the linear control function, u = −23.1717θ − 6.7996θ̇.

Caltech ducted fan in hover mode. This dynamics describes the motion of a landing aircraft in a
hover mode with two forces u1 and u2. Let x, y, θ denote the position and orientation of the centre of
the fan, then the dynamics with six state variables [x, y, θ, ẋ, ẏ, θ̇] of motion can be written as follows:

ẍ =
−dẋ+ u1 cos(θ)− u2 sin(θ)

m
,

ÿ =
−dẏ + u1 sin(θ)− u2 cos(θ)−mg

m
,

θ̈ =
ru1
I
,

(2)

where g = 0.28, m = 11.2, I = 0.0462, r = 0.156 and d = 0.1. We finds a neural Lyapunov
function: V = tanh(W2 tanh(W1x+B1) +B2), where x = [x y θ ẋ ẏ θ̇]T and

W1 =


0.0314 0.0190 −0.1893 0.2532 0.0177 −0.0890
−0.0397 0.0242 0.1094 −0.1346 0.0186 0.1177
−0.1221 0.0584 0.1417 −0.0897 −0.0658 0.0060
−0.0853 −0.0682 −0.0680 0.1741 0.2397 0.0061
0.0847 0.0065 0.0952 −0.1782 0.3689 0.0006
−0.1239 0.2481 −0.0991 0.2475 −0.0408 0.0017


1



,
W2 =

[
0.0563 0.0368 0.0218 −0.0158 −0.0093 −0.0186

]
,

B1 =
[
−0.6099 −0.5518 0.1146 0.1873 0.2220 0.4308

]
and B2 =

[
0.0666

]
and two neural controllers:

u1 = 0.5000x+ 0.000002y − 2.1339θ + 2.7899ẋ− 0.00000003ẏ − 1.3992θ̇

u2 = 0.000001x− 1.0000y − 0.000003θ − 0.000003ẋ− 5.0407ẏ − 0.000001θ̇

N-Link Planar Robot Balancing. The n-link pendulum system has n control inputs and 2n state
variables [θ1, θ2, . . . , θn, θ̇1, θ̇2, . . . , θ̇n], where represent the n link angle and the n angle velocity.
Let each link has mass mi and length `i, and the moments of inertia Ii are computed from the link
pivots, where i = 1, 2, . . . , n, then the dynamics has the form:

M (θ) θ̈ + C(θ, θ̇)θ̇ + τ(θ) = Bu, (3)
where

θ = [θ1, θ2, . . . , θn]
T ∈ Rn, u ∈ Rn

M(θ) = [aij cos (θj − θi)] ,M (θ) ∈ Rn×n

C(θ, θ̇) =
[
−aij θ̇j sin (θj − θi)

]
, C(θ, θ̇) ∈ Rn×n,

τ(θ) = [−bi sin θi] , G(θ) ∈ Rn,

B = [1, 1, . . . , 1]
T{

aii = Ii +mi`
2
ci + `2i

∑n
k=i+1mk, 1 ≤ i ≤ n

aij = aji = mj`i`cj + `i`j
∑n

k=j+1mk, 1 ≤ i < j ≤ n

bi =

(
mi`ci + `i

n∑
k=i+1

mk

)
g, 1 ≤ i ≤ n,

For the 2-link pendulum system our approach can find the following neural Lyapunov function that is
valid within domain D : ‖x‖2 ≤ 0.5 under precision δ = 0.01: V = tanh(W2 tanh(W1x+B1) +

B2), where x = [θ1 θ2 θ̇1 θ̇2]
T

W1 =

−0.3578 −0.2339 −0.5153 −0.2648
0.4244 0.3886 0.1041 0.0195

−0.4218 −0.4314 −0.4371 −0.2353
−0.0042 −0.0020 −0.0013 −0.0077

 ,
W2 =

[
0.1670 −0.1353 −0.2582 0.5208

]
,

B1 =
[
−0.4547 0.0263 0.6899 0.7721

]
and B2 =

[
0.7633

]
,

and two neural controllers are
u1 = −49.5249θ1 − 20.0854θ2 − 21.4826θ̇1 − 10.0516θ̇2

u2 = −18.2287θ1 − 19.143θ2 − 9.2905θ̇1 − 6.6695θ̇2
Also, the learning procedure finds a neural Lyapunov function for the 3-link pendulum system
on valid domain D : ‖x‖2 ≤ 0.5 under precision δ = 0.01. The neural Lyapunov function:
V = tanh(W2 tanh(W1x+B1) +B2), where x = [θ1 θ2 θ3 θ̇1 θ̇2 θ̇3]

T

W1 =


−0.1919 0.1715 −0.0481 0.0707 0.1923 0.0548
0.0943 0.0112 0.0027 0.0102 −0.0005 0.0002
0.0942 −0.2393 0.0932 −0.0692 −0.1582 −0.0221

−0.1136 −0.1927 −0.0753 −0.0407 −0.1289 0.0246
−0.1645 0.2017 0.0412 −0.1091 −0.1892 −0.1396
0.0868 0.0103 0.0030 0.0094 −0.0002 −0.0007

 ,
W2 =

[
0.0017 0.4299 0.0023 −0.0021 0.0002 −0.5047

]
,

B1 =
[
−0.5246 −0.3993 −0.3698 0.1214 0.2343 0.4633

]
and B2 =

[
0.3918

]
,

and three neural controllers are
u1 = −101.7856θ1 − 8.9265θ2 − 3.467θ3 − 28.5081θ̇1 − 14.0951θ̇2 − 7.3643θ̇3

u2 = 15.8736θ1 − 62.5769θ2 − 4.0104θ3 − 7.8591θ̇1 − 12.6341θ̇2 − 7.3690θ̇3

u3 = 5.1672θ1 + 7.2750θ2 − 42.4820θ3 − 2.6997θ̇1 − 4.9186θ̇2 − 11.8446θ̇3

2



Wheeled vehicle path following. We consider the path tracking control using kinematic bicycle
model from (see Figure 4(c)). We take the angle error θe and the distance error de as state variables,
which θe = θ − θp, then the system can be written as the form:

ṡ =
v cos (θe)

1− ḋeκ(s)
,

ḋe = v sin (θe),

θ̇e =
v tan (u)

L
− vκ(s) cos(θe)

1− ḋeκ(s)
.

(4)

Assume a target path is a unit circle, then we obtain the following Lyapunov function on for
‖x‖2 ≤ 0.8, V = tanh(W2 tanh(W1x+B1) +B2), where x = [de θe]

T and

W1 =

[
−2.5250 −0.4774 −0.5239 −0.0232 −0.0627 1.3562
−0.1841 −0.6964 −0.5862 −0.5032 −0.5620 2.5184

]T
,

W2 =
[
0.6251 −1.0490 −1.0708 0.4644 0.7019 −1.1287

]
,

B1 =
[
−1.2776 −0.4641 −0.3699 0.9194 0.9758 1.3282

]
and B2 =

[
0.0997

]
and the neural controller is u = −0.8471de − 1.6414θe.

Appendix C: More Details on Related Work

Compared to the control-theoretic approaches, neural Lyapunov control provides a much simpler
design process, relying purely on gradient-based methods for the learning. The saving is similar
to the reduction of feature engineering and specific optimization methods in other areas of AI. The
recent work of Richards et. al. [16] has also proposed and shown the effectiveness of using neural
networks to learn safety certificates in a Lyapunov framework, but our goals and approaches are
different. Richards et. al. focus on discrete-time polynomial systems and the use of neural networks
to learn the region of attraction of a given controller. The Lyapunov conditions are validated in
relaxed forms through sampling. Special design of the neural architecture is required to compensate
the lack of complete checking over all states. In comparison, we focus on learning the control and the
Lyapunov function together with provable guarantee of stability in larger regions of attraction. Our
approach directly handles non-polynomial continuous dynamical systems, does not assume control
functions are given other than an initialization, and uses generic feed-forward network representations
without manual design. Our approach successfully works on many more nonlinear systems, and find
new control functions that enlarge regions of attraction obtainable from standard control methods.
Related learning-based approaches for finding Lyapunov functions include [4, 5, 7, 14]. There is
strong evidence that linear control functions are all we need for solving nonlinear control problems in
reinforcement learning as well [12], suggesting convergence of different learning approaches.

Similar to our approach, in Revanbakhsh et. al. [15] there is a candidate function which is falsified
by a verifier, and a learner who updates the function based on counterexamples provided by the
verifier. However, there important differences in our approaches. Most importantly, we directly
search for a controller as an explicit function of states, which is important for reliability, whereas
Revanbakhsh et. al. look for a control Lyapunov function first, and then use results from [17] to
construct a non-linear controller that is not necessarily continuous at the origin. Another difference
is that Revanbakhsh et. al. use semi-definite programming (SDP) for the verification to improve
efficiency of their algorithm, whereas we use δ-complete decision procedures. The methods do not
support non-polynomial dynamics and use Taylor expansion to represent trigonometric functions
using polynomials, unable to provide complete guarantee about the effect of the learned control over
the original system. Using SDP for the verification involves relaxations of constraints it is possible
that verifier in [15] rejects a perfectly fine candidate.

Kapinski et. al. [10] use simulation to improve efficiency of the search for Lyapunov functions.
Similar to our work, they do not rely on local approximation of the dynamics, but have to assume the
Lyapunov function is represented as a low-degree polynomial. They only consider switching systems
with no control input, and look for Lyapunov functions of the form zTPz, where z is a vector of
m monomials and P is a symmetric matrix with elements in R. Whenever their algorithm finds a
candidate Lyapunov function, it uses SMT solvers like Z3 or dReal to verify conditions of a Lyapunov

3



function. If the verification fails, a counterexample is returned which is used to update matrix P in the
candidate zTPz. Since the verification is very expensive, authors first use simulations to construct a
set of linear constraints that a Lyapunov function in the form of zTPz must not satisfy. As long as
these constraints are satisfiable, counterexample executions are used to update them. Verification is
only involved when those constraints are proven to be unsatisfiable.

Majumdar et. al. [11], use sum of squares (SOS) and semidefinite programs to guarantee validity of
their solutions to motion planning problems for non-linear systems with uncertainty. Given a source
and destination in a bounded domain of interest, they find a funnel and control inputs that guarantees
as long as uncertainties and disturbances in the real world are considered in the over-approximations
of the model, robot can stay inside the funnel (and hence avoid unsafe states) and reaches the goal.

Ahmadi et. al. [2] prove that dynamical system ẋ = −x+ xy, ẏ = −y does not admit a polynomial
Lyapunov function of any degree, despite being globally asymptotically stable. It is common to use
sum of squares (SOS) optimization in the search for Lyapunov functions [8, 13, 6, 9, 11]. However,
scalability is arguably the most outstanding challenge for this method; if a polynomial over n variables
has degree 2d then the size of the corresponding semidefinite program from SOS decomposition will
be roughly nd which can grow quickly even for low degree polynomials. An interesting relaxation to
Lyapunov function comes from the fact that in order to eventually reach and stay at zero, a function
does not have to be monotonic. This allows Lyapunov functions that could rise but always compensate
for that rise [1, 3] motivating for more expressive nonlinear function approximators.

References
[1] Amir A. Ahmadi. Non-monotonic lyapunov functions for stability of nonlinear and switched

systems: theory and computation. Master’s thesis, Massachusetts Institute of Technology, 2000.

[2] Amir A. Ahmadi, M. Krstic, and P. A. Parrilo. a globally asymptotically stable polynomial
vector field with no polynomial lyapunov function. In 2011 50th IEEE Conference on Decision
and Control and European Control Conference.

[3] Amir A. Ahmadi and P. A. Parrilo. On higher order derivatives of lyapunov functions. In
Proceedings of the 2011 American Control Conference, pages 1313–1314, June 2011.

[4] F. Berkenkamp, R. Moriconi, A. P. Schoellig, and A. Krause. Safe learning of regions of attrac-
tion for uncertain, nonlinear systems with gaussian processes. In 2016 IEEE 55th Conference
on Decision and Control (CDC), pages 4661–4666, Dec 2016.

[5] Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 908–918. Curran Associates, Inc., 2017.

[6] G. Chesi and D. Henrion. Guest editorial: Special issue on positive polynomials in control.
IEEE Transactions on Automatic Control, 54(5):935–936, May 2009.

[7] Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A
lyapunov-based approach to safe reinforcement learning. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems 31, pages 8092–8101. Curran Associates, Inc., 2018.

[8] D. Henrion and A. Garulli. Positive Polynomials in Control, volume 312 of Lecture Notes in
Control and Information Sciences. Springer Berlin Heidelberg, 2005.

[9] Z. Jarvis-Wloszek, R. Feeley, Weehong Tan, Kunpeng Sun, and A. Packard. Some controls
applications of sum of squares programming. In 42nd IEEE International Conference on
Decision and Control (IEEE Cat. No.03CH37475), volume 5, pages 4676–4681 Vol.5, Dec
2003.

[10] James Kapinski, Jyotirmoy V. Deshmukh, Sriram Sankaranarayanan, and Nikos Arechiga.
Simulation-guided lyapunov analysis for hybrid dynamical systems. In Proceedings of the 17th
International Conference on Hybrid Systems: Computation and Control, HSCC ’14, pages
133–142. ACM, 2014.

4



[11] Anirudha Majumdar and Russ Tedrake. Funnel libraries for real-time robust feedback motion
planning. The International Journal of Robotics Research, 36(8):947–982, 2017.

[12] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear policies
is competitive for reinforcement learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems
31, pages 1805–1814. Curran Associates, Inc., 2018.

[13] Pablo A. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in
robustness and optimization. PhD thesis, California Institute of Technology, 2000.

[14] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. Adaptative
computation and machine learning series. University Press Group Limited, 2006.

[15] Hadi Ravanbakhsh and Sriram Sankaranarayanan. Learning control lyapunov functions from
counterexamples and demonstrations. Autonomous Robots, 43(2):275–307, 2019.

[16] Spencer M. Richards, Felix Berkenkamp, and Andreas Krause. The lyapunov neural network:
Adaptive stability certification for safe learning of dynamical systems. In Proceedings of The
2nd Conference on Robot Learning, volume 87 of Proceedings of Machine Learning Research,
pages 466–476, 29–31 Oct 2018.

[17] Eduardo D. Sontag. A ‘universal’ construction of artstein’s theorem on nonlinear stabilization.
Systems & Control Letters, 13(2):117 – 123, 1989.

5


