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Abstract— Reinforcement learning for control over continuous
spaces typically uses high-entropy stochastic policies, such as
Gaussian distributions, for local exploration and estimating
policy gradient to optimize performance. Many robotic control
problems deal with complex unstable dynamics, where applying
actions that are off the feasible control manifolds can quickly
lead to undesirable divergence. In such cases, most samples taken
from the ambient action space generate low-value trajectories
that hardly contribute to policy improvement, resulting in slow
or failed learning. We propose to improve action selection in
this model-free RL setting by introducing additional adaptive
control steps based on Extremum-Seeking Control (ESC). On
each action sampled from stochastic policies, we apply sinusoidal
perturbations and query for estimated Q-values as the response
signal. Based on ESC, we then dynamically improve the sampled
actions to be closer to nearby optima before applying them to
the environment. Our methods can be easily added in standard
policy optimization to improve learning efficiency, which we
demonstrate in various control learning environments.

I. INTRODUCTION

Deep reinforcement learning offers a promising solution
for challenging control problems in robotics [1]–[8]. It turns
controller synthesis into stochastic optimization problems
in the parameter space of expressive control policies. In
such policy optimization process, each vector of parameters
defines a stochastic policy, from which we sample trajectories
to estimate the policy gradient direction over the parameters,
for local improvement of the policy towards higher overall
performance. A wide range of techniques have been developed
to ensure reliable gradient estimation and policy improve-
ment [9]–[13]. However, it is still often observed that in
many control problems, policy optimization can fail to make
progress towards desirable performance [14]–[16].

A common design in policy optimization over continuous
spaces that has not been challenged much is that the policies
map states to Gaussian distributions over the action spaces.
Sampling using such high-entropy stochastic policies enables
exploration of actions, which is generally important in RL.
However, many robotic control problems deal with complex
unstable dynamics, where applying actions that are off the
feasible control manifolds can quickly lead to undesirable
divergence. Consequently, in such cases, most samples taken
from the ambient action space generate low-value trajectories
that hardly contribute to policy improvement, resulting in
slow or failed learning. For instance, consider the problem
of controlling the thrusts of a quadrotor for path tracking.
Successful control requires symmetry in the thrusts of the
four propellers. Exploration of actions under a Gaussian
distribution over the four actions will most likely violate
such constraints, and the quadrotor can quickly lose balance
and fall off, making it hard to progress in learning. Such

Fig. 1. Diagram for Extremum-Seeking Action Selection (ESA) in the
RL setting. We use Extremum-Seeking Control (ESC) strategies to improve
the quality of exploratory actions, which reduces the sampling of low-value
trajectories and accelerates policy optimization.

problems have led to much pre-processing and manual tuning
in the practical use of RL [14]–[18], such as normalization of
states and observations, reward engineering, and customized
design of state and action spaces such that the feasible control
becomes easier to sample with Gaussian distributions.

In this paper, we propose a general model-free approach
for improving the quality of exploratory action samples for
accelerating policy optimization. We utilize the methods
of Extremum-Seeking Control (ESC), an adaptive feedback
control strategy that performs real-time optimization of system
performance [19]–[21]. ESC injects periodic perturbation
signals in the control input to a system, and formulates
feedback control laws to maintain dynamic estimations that
adapt to the system response. It can improve the perfor-
mance of the system by tracking its local optimum without
analytic knowledge of the underlying dynamics. We do not
directly change the practice of using Gaussian distributions
as stochastic policies, but adapt ESC to the RL context to
improve the quality of sampled trajectories. After each action
is sampled from stochastic policies in the standard way, we
apply sinusoidal perturbations and query for estimated Q-
values as the response signal (Figure 1). Based on ESC, we
then dynamically improve the sampled actions to be closer
to nearby optima before applying them to the environment.

We will demonstrate how the ESC components can be
easily added in standard policy optimization algorithms such
as PPO [11] and SAC [13] to improve learning efficiency,
without requesting any additional models or oracles that are
often needed in DPI approaches [22].

In Section II, we first use simple model-free optimization



settings to demonstrate why ESC can achieve better sample
quality and efficiency than policy gradient methods. Then
in Section III, we describe our Extreme-Seeking Action
Selection (ESA) method for policy optimization that uses
ESC to improve action selection and reduces the sampling
of low-value trajectories, to accelerate the learning process.
In Section IV, we evaluate the proposed methods in various
continuous control environments in MuJoCo [23], as well as
a high-fidelity simulation environment for quadrotor control.
We show the benefits of adding ESA in PPO and SAC, as
well as other approaches such as adding parameter noise.
We perform various ablation studies to show basic strategies
for hyperparameter tuning in ESA, which is important in
balancing between fast adaptive improvement on each sample
and the conservative updates by policy gradient.

Related Work. The integration of adaptive control and rein-
forcement learning has been investigated in recent work [24]–
[28]. Typically the focus is on using both methods for better
control design in systems with specific structures such as
control-affineness. Under such assumptions, strong theoretical
guarantees can be obtained on stability and asymptotic conver-
gence, which significantly improves standard RL approaches.
The work in [25]–[27] uses RL approaches to first train
a nearly optimal controller that is subsequently integrated
into adaptive control methods to ensure global boundedness
with asymptotic stability. We aim to propose a new direction
for using methods from adaptive control to RL that focuses
on improving learning efficiency in the general model-free
setting. The dynamics perspectives and frequency-domain
techniques from ESC can avoid the well-known challenge of
maintaining complex distributions for sampling high-value
trajectories, and allow us to improve each sampled action in
a manner similar to real-time model-free control.

It is important to note that what we propose here is not
just an exploration strategy, but a way for enhancing the
quality of exploratory samples to accelerate the learning
process in challenging control problems. Exploration is a
major topic in RL [29]. Over continuous spaces, a widely
used technique is to introduce noise into the policy action
space [10], [12], [30]–[32] or parameter space [33]–[36]. We
introduce sinusoidal perturbations based on ESC design to
enable the use of frequency-domain techniques for improving
each action sample, which is different from further injecting
random noise. We will further discuss the difference and
compare the performance with the exploration through noise
injection approaches in the experiments.

II. PRELIMINARIES

A. Extreme-Seeking Control

Extremum-seeking control (ESC) is a model-free adaptive
control method for adjusting inputs to a system to dynamically
track its locally optimal performance. Here we explain it in
the simplest setting of the system being an unknown but
static objective function, in which case ESC can be viewed
as a zeroth-order optimization method.

Consider a continuous objective function J(u) : Rn → R.
Starting from an initial input u(0) ∈ Rn, ESC designs a
control law for tracking a nearby local optimum u∗ of J
without accessing the analytic form of J . The core idea is
that by injecting periodic perturbations on the input u(t) and
observing the change in J(u(t)), we can perform frequency-
domain analysis to exploit the derivative information of J .
To achieve this, the ESC introduces an additional estimation
variables v(t) ∈ Rn that aim to converge to u∗. The feedback
control law on u(t) and v(t) are designed as:

u(t) = K sin(ωt) + v(t) (1)
v̇(t) = −αL[sin(ωt)H[J(u(t))]] (2)

where H represents a high-pass filter, and L represents a low-
pass filter. Note that v(t) is updated through its time derivative
v̇(t) in Equation (2), from initial condition v(0) = u(0).
Importantly, the actual input to the system u(t) in Equation
(1) is always oscillatory, and it is the estimation vector v(t)
that will converge to u∗. K ∈ R+ is the magnitude of the
sinusoidal perturbation in u(t), and α ∈ R is a signed learning
rate parameter.

At a high-level, the design uses the control input u(t) to
probe the system response J(u(t)). Then for the estimation
v(t), we apply high-pass filtering to the response H[J(u(t))],
and then demodulate with sin(ωt)H[J(u(t))], and finally use
a low-pass filter L[sin(ωt)H[J(u(t))]]. After these steps, we
will be able to make use of second-order properties of the
objective J for dynamically updating v(t) to approach u∗.
For example, in the one-dimensional case, we can show (more
details of the derivation are provided in the Appendix section):

d

dt
(v(t)− u∗) = −v̇(t) = αKL[sin(ωt)H[J(u(t))]]

= −1

2
αKJ ′′(u∗) · (v(t)− u∗) (3)

Thus, if J is convex around u∗ (the concave case can be
handled by changing the sign of α), then − 1

2αKJ ′′(u∗) is
real and negative, and the error between v(t) and u∗ follows
exponentially-stable linear dynamics that quickly converges
to zero. Namely, the estimation v(t) will converge to the
optimum u∗ of the objective J . Importantly, although the
analysis uses J ′′(u∗), it never needs to be known or estimated,
since the algorithm only needs to iteratively update u(t) and
v(t) according to Equation (1) and (2). In general, ESC
methods ensure the following:

Proposition II.1 (Convergence of ESC [19]). With appropri-
ate sinusoidal perturbations and the corresponding filters, the
estimation v(t) exponentially converges to a local optimum
u∗ of the objective function J in a neighborhood of v(0).

Although the method sketched above considers a static
objective, the power of ESC methods lies in its ability of
dealing with stochastic objectives. The idea is that as long as
the plant dynamics has lower-frequency than the perturbation,
the high-pass filter will remove the intrinsic frequency of
the system dynamics, and the same derivation applies to the
time-varying J(u(t), t), possibly with stochasticity. In the



dynamic case, the perturbation frequency should be chosen
to be much higher than the frequency of J(u∗, t), so that the
high-pass filtering steps can be effective. Also, the methods
can naturally be applied to multi-dimensional control inputs,
using different frequencies for each input dimension. The
general settings are discussed in detail in [19], [20].

B. Comparison with Policy Gradient

Policy gradient in RL can be considered a special case of
the general strategy of search gradient [37], which we can
directly compare with ESC. Again consider the setting of
optimizing an unknown objective J(u). The search gradient
approach operates with a parameterized distribution Pθ(u)
over the input space with density pθ(u), and optimizes the
following objective in the parameter space Θ:

max
θ∈Θ

Eu∼Pθ(u)[J(u)]

by iteratively improves the parameters θ following the gradient
of the stochastic objective, which is of the form:

∇θEu∼Pθ(u)[J(u)] = Eu∼Pθ(u)[J(u)∇θ log(p(u))]. (4)

With appropriate learning rates, following the search gradient
ensures convergence to a distribution that centers at a local
optimum of the objective J . The method benefits from reliable
Monte Carlo estimation of the gradient in Eq (4) with enough
samples, which is suitable for offline learning and conservative
policy optimization. However, the dynamic updates in ESC
can achieve much faster per-sample improvement, as we show
in the following example.

Example II.2. In Figure 2, we compare ESC and policy
gradient on simple objectives in both static and dynamic
settings. We first use the static objective J(u) = (u1 −
0.1)2 + (u2 − 0.5)2 in Figure 2(a), where the initial input
is at (2, 2). The blue curve at the bottom that shows the
fastest convergence to J(u∗) = 0 is achieved by the estimate
v(t) in ESC, and the oscillating dotted curve around it is
the response on the actual control input u(t). In contrast, the
other curves from policy gradient methods show much slower
convergence that is only competitive when 100 samples are
used for each update, whereas ESC only queries the objective
with one input sample per iteration. In fact, ESC can almost
achieve the same progress as gradient descent, which uses the
analytic gradient of the function. In Figure 2(b), we consider
a time-varying objective J(u, t) = (u1−0.1t)2+(u2−0.5t)2.
All methods start from (2, 2) which is far from the initial
optimum of the objective, which is at (0, 0). We see that
the blue curve representing the estimation with ESC quickly
converges to the objective after t = 4, while policy gradient
methods have a hard time quickly tracking the changing
objective and the sample size needs to be very large.

Consequently, it can be beneficial to use ESC to improve
the quality of each sample, while maintaining an overall
policy gradient framework for reliable improvement. This is
the key approach that will be explained in the next section.

For the RL setting, we use the following standard notations
for policy optimization. Markov Decision Processes are tuples

Fig. 2. Illustration of the optimum tracking performance between ESC
and PG in Example II.2. It demonstrates that ESC (blue) exhibits the fastest
convergence rate in both static and dynamic optimum examples. (a) The
convergence speed in tracking a static objective function. (b) Comparison of
the convergence in tracking a time-varying objective function. Trajectories
show the convergence towards the optimum over time with varying objective
values. The initial point is represented by circle dots, and the goal point at
time t = 4 is denoted by a star.

M = ⟨S,A, P, r, γ⟩ where S is the state space and A the
action space, and both are continuous in our setting. The
transition function P : S × S × A → [0, 1] determines the
probability P (s′|s, a) of transitioning into state s′ from state
s after taking action a. We consider general forms of reward
functions r : S × A× S → R defined over transitions, and
γ ∈ [0, 1) is the discount factor. We write πθ to denote
a stochastic policy πθ : S × A → [0, 1] parameterized
by θ. The goal of policy optimization is to maximize
the expected γ-discounted cumulative return Jρ(s0)(θ) =
E [

∑∞
t=0 γ

tr(st, at, st+1)] under some distribution of the
initial states ρ(s0). The Q-value of a state-action pair (s, a)
under a policy πθ is the expectation of cumulative return of
future trajectories after taking (s, a), defined as Qπθ (s, a) =
E[
∑∞

t=0 γ
tr(st, at, st+1)|s0 = s, a0 = a]. It satisfies the

Bellman equation Qπθ (s, a) = E[r(s, a, s′) + γV πθ (s′)].
In policy gradient, policy parameters θ are updated at some

learning rate α in the direction of

∇θJ(θ) = Es,a∼πθ
[Aπθ (s, a)∇θ log πθ(a|s)]

where Aπθ (s, a) = Qπθ (s, a)− V πθ (s) is the advantage of
the action a at state s, and Ê[·] denotes the empirical mean
estimated through sampled trajectories. In continuous spaces,
the behavior policy πθ(a|s) at each state s typically is chosen
to be a Gaussian distribution N (µs,Σs) over the action space.

III. EXTREMUM-SEEKING ACTION SELECTION

We now describe the Extreme-Seeking Action Selection
(ESA) method, which uses ESC strategies for improving
each action sample to attain higher advantages locally, with
exploration driven by both the sampling distribution from
the behavior policy and the perturbations within ESC. The
overall algorithm is shown in Algorithm 1.

ESA can be used as an add-on component for improving the
quality of each action sample in typical policy optimization
algorithms. We write at ∼ πθ(·|st) as the action sample
drawn at state st at time step t, according to the distribution
determined by the current policy πθ. Following ESC design
in Equation (1) and (2), we need to maintain two vectors:
u(t) as the oscillatory control input, and v(t) for updating an



estimation that approaches the optimum. In the RL setting,
persistent perturbation on the action hinders convergence and
policy improvement. So instead of using oscillatory inputs as
actions, we use u(t) to probe estimations of Q-values, from
which we find a reliable improvement at+v(t) of the original
action sample, which is then applied to the environment. u(0),
v(0), and t are all set to zero in the beginning of each episode.

Concretely, as shown in Algorithm 1, for each sampled
action at, we first apply sinusoidal perturbation as at + u(t),
where u(t) = v(t) + K sin(ωt). We use the Q-values
determined by the current policy πθ as the objective, and query
for the value of Q(s, at +u(t)). Next, we use a modification
of Equation (2) to update v(t) as follows:

v(t+ 1)← v(t) + α sin(ωt)H[Q(s, at + u(t))] (5)

where H is a high-pass filter, and α > 0 is a learning rate. We
do not need the minus sign in Equation (2), which was for
minimizing the objective and here we maximize. Importantly,
we have also dropped the low-pass filter L[·] from the standard
design of ESC, because we want to still allow some high-
frequency perturbations for enabling exploration, which is
different from the ESC goal of tracking the extremum as
precisely as possible. In this way, exploration of actions
is achieved first by the original sample at ∼ πθ(·|st), and
then with sinusoidal components in v(t) from the definition
above. Finally, at + v(t) will be the actual action applied to
the environment, and we move onto the next state st+1 by
querying the environment with (st, at + v(t)).

We take advantage of the ability of ESC methods for
directly tracking time-varying objectives, which is the Q-
values that change over time steps within each episode. It
bypasses a major challenge for exploration in continuous
spaces, where we can not easily keep track of properties of
individual states (such as visitation counts that are often used
for exploration in discrete spaces). Instead, using the control-
theoretic and frequency-domain analysis, we shift the focus
to time-varying perturbation throughout the entire trajectories
to achieve improvement in the overall performance.

Fig. 3. An illustration of the effect of using high-pass filters on the Q-value
landscapes. (a) A Q-value landscape at a state in the inverted pendulum
environment, plotted for a fixed policy πθ at an intermediate stage of training.
(b) Filtered Q-value landscape from (a).

Hyperparameters. The new hyperparameters introduced
by the ESA component include the perturbation magnitude
vector K, sinusoidal perturbation frequency vector ω, and the
learning rate vector α. In particular, as long as the perturbation

Algorithm 1 Policy Optimization with ESA
1: Randomly initialize the policy network parameters θ and

Q-network parameters ϕ, and empty replay buffer D.
2: Choose hyperparameters: perturbation amplitudes vector

K, frequency vector ω, and learning rate vector α,
3: for episodes = 1, . . . , N do
4: u(0)← 0 and v(0)← 0
5: for t = 0, . . . , T do
6: Sample at ∼ πθ(·|st)
7: u(t)← v(t) +K sinωt ▷ Following Eq (1)
8: v(t+1)← v(t)+αK sin(ωt)H[Q(s, at +u(t))]
9: ▷ Filter based on Q-values, as Eq. (5)

10: st+1 ← Env(st, at + v(t))
11: D ← D ∪ (st, at + v(t), rt, st+1)
12: end for
13: for each policy optimization step do
14: Update θ and ϕ with D using standard policy

optimization algorithms
15: end for
16: end for

frequency is reasonably higher than the frequency of the Q-
value function, the high-pass filter will be able to isolate the
local second-order information of the objective. Effects of
the hyperparameter choices will be further discussed through
ablation study in Section IV.
Benefits of High-Pass Filtering. High-pass filtering is an
important step in ESC that ensures the convergence of the
design of the algorithm. Intuitively, in the context of action
selection, high-pass filters remove “flat” regions in the Q-
value landscape, making it easier to locate actions that lead to
local peak Q-values. In Figure 3, we observe that high-pass
filters enhance the visibility of peaks and enable faster local
improvement towards the optimum.
Comparison with Using Analytic Gradient of Q-Networks.
A natural approach of improving action samples to higher
quality is to follow the gradient of the Q-value networks,
i.e., using a first-order approach rather than the zeroth-order
one proposed here. Namely, for each state st and sampled
action at, we can query the Q-network for its gradient
at (st, at) over actions, which in principle should indicate
the direction of moving the sampled action towards higher
Q-values. However, the Q-value models provided by deep
neural networks have highly non-smooth landscapes over
action inputs, as illustrated in Figure 3. Thus the analytic
gradients are frequently misleading. Instead, ESC provides
robust estimation through filtering and frequency analysis.

IV. EXPERIMENTS

We show experimental results to evaluate how ESA can
improve the performance of policy optimization. We add
ESA to the leading policy optimization methods including
Proximal Policy Optimization (PPO) [11] and Soft Actor-
Critic (SAC) [13] and benchmark the performance difference
in various challenging control learning environments.



Fig. 4. Illustration of how ESA improves the performance of PPO for quadrotor environment. We evaluated both policies trained after the same number of
iterations. We observe that ESA improves the quality of sampled actions and accelerates learning. (a) Quadrotor control environment. (b) Performance
comparison in a circle target path task. (c) Performance comparison in tracking an eight-shaped target path, where the PPO-trained policy diverges.

Fig. 5. Performance comparison for all methods. PPO+ESA (blue, first row) and SAC+ESA (blue, second row) demonstrate higher learning efficiency and
performance compared to other methods across all tasks. In comparison, adding random parameter noise (orange) leads to better exploration in the early
stages of some tasks, but fails to sustain effective exploration throughout the entire training process.

Environments. We consider continuous control environments
in OpenAI Gym [38] and MuJoCo [23], including the inverted
pendulum, hopper, and walker, as well as a Gazebo-based
quadrotor control simulator enabled by the commercially-
used autopilot framework PX4 [39]. The quadrotor control
environment involves 12 state dimensions (inertia frame
positions, velocities, rotation angles, and angular velocities)
and 4 control inputs (thrust, roll, pitch, and yaw). Details
of the equations of motion of the quadrotor can be found
in [40]. The goal of the agent is to track an oriented point
along a path, and the rewards are calculated based on the
discrepancies between their positions and orientations.

Baselines. We compare the performance of PPO+ESA and
SAC+ESA with the standard PPO and SAC, as well as
with the versions using additional parameter space noise,
a widely-used approach for enhancing exploration [35]. We
also show compare with DDPG incorporating time-correlated
Ornstein–Uhlenbeck noise [10]. All algorithms are tested on
5 different random seeds in all environments.

Overall Performance. Figure 5 shows comparisons of

learning curves for all methods in benchmark environments.
We observe that ESA accelerates learning and enhances the
performance of both PPO and SAC, and outperforms other
baselines. The computational cost of adding ESA is at most
50 percent longer runtime for each episode (2048 steps). In
particular, Figure 4 demonstrates the specific improvement in
performance in the quadrotor control environment. We visual-
ize the behaviors of the trained control policies after the same
number of training steps, and observe that PPO+ESA shows
clear improvement in the control performance compared to
the original PPO-trained policy.

Ablation Study: Perturbation Magnitude. The parameter
amplitude K of the perturbation signal presents a trade-
off between increasing convergence speed and reducing
oscillation. Figure 6(a) shows how the learning performance
changes as at various values of K for the perturbation signal
in the inverted pendulum environment, when the frequency
of the perturbation is fixed. We see that there the magnitude
of K = 0.2 (red) achieves the best outcome. Reducing K
to 0.1 leads to a slower convergence speed. Increasing K to



Fig. 6. Ablation studies conducted on the inverted pendulum environment. (a) Training curves in relation to the magnitude of the perturbation signal. (b)
Training curves in relation to the frequency of the perturbation signal. (c) Training curves comparing different numbers of ESA intervening episodes.

be above 0.2 accelerates the initial progress of the learning
curves but results in much higher variance in performance
across different random seeds.

Ablation Study: Perturbation Frequency. The effective
perturbation frequencies are affected by the environment
dynamics and the responsiveness of the Q-value functions. In
general, higher ω allows us to obtain a more accurate gradient
estimate by applying a high-pass filter to the value. However,
very high frequency may lead to non-smooth action choices
that negatively impact policy learning. On the other hand,
as shown in Figure 6(b), we observe that when the frequecy
gets higher than 10π the effectiveness of ESA is reduced.

Ablation Study: Decay of ESA Learning Rate. In the policy
optimization process, when the policy has reached near-peak
performance, it also becomes very sensitive to perturbations.
Thus the ESA-driven exploration should decay over time to
avoid destabilizing policy learning. The results in Figure 6(c)
illustrate the impact of different decay rates on performance.

V. CONCLUSION

We proposed the extremum-seeking action selection (ESA)
method for improving both exploration and exploitation in
sampling actions for policy optimization in continuous spaces.
We follow the strategies in extremum-seeking control (ESC)
by applying sinusoidal perturbations on the sampled actions
in each step to obtain actions of higher action values and
also improve exploration. We have shown that ESC methods
can be particularly sample efficient for locally optimizing
unknown objectives, compared to policy gradient methods. At
the same time, the scale of ESA perturbations on the sampled
actions needs to be carefully chosen to balance the trade-
off between fast local improvement with ESC and reliable
policy improvement over all states. The ability of tracking
dynamic objectives makes ESC methods particularly suitable
for handling problems in the continuous domain by shifting
the focus from states to improving entire trajectories over
time. We observed clear benefits of adding ESA methods
in PPO and SAC in improving the learning performance in
various continuous control problems.

APPENDIX: MORE DETAILS IN THE DERIVATION OF ESC
Because ESC techniques have rarely been introduced in the

context of reinforcement learning, we provide more derivation
details on how ESC ensures that its estimate v(t) converges
locally to an optimum, following Equation (1-2) We use
the one-dimensional input for simplicity, and more general
derivations can be found in standard references such as [19].

Consider minimizing J(u) near a strict local minimizer u∗,
which means that the first-order derivative J ′(u∗) = 0, and the
second-order derivative J ′′(u∗) > 0 in a local neighborhood
of u∗. Since the analysis is local, we can approximate J(u(t))
with the second-order Taylor expansion:

J(u(t))∼=J(u∗) +
1

2
J ′′(u∗)(u(t)− u∗)2

=J(u∗) +
1

2
J ′′(u∗)(K sin(ωt) + v(t)− u∗)2

where the first-order term J ′(u∗) = 0, and the second equality is by
plugging in u(t) from Equation (1). Now, a key step is to focus on
the error dynamics, which is how the difference between v(t) and
u∗ changes, by defining ξ(t) = u∗ − v(t). The previous expansion
can then be rewritten as:

J(u(t)) = J(u∗) +
1

2
J ′′(u∗)ξ(t)2 −KJ ′′(u∗) sin(ωt)ξ(t)

+
1

4
K2J ′′(u∗)(1− cos 2ωt)

where we use sin2(ωt) = 1
2
(1 − cos 2ωt). Now, by applying a

high-frequency filter H on J(u(t)), we can remove the terms at
lower frequencies such as J(u∗) and 1

4
K2J ′′(u∗). We also remove

the second-order term ξ(t)2 dominated by ξ(t) in the local analysis:

H[J(u(t))] ∼= −KJ ′′(u∗) sin(ωt)ξ(t)− 1

2
K2J ′′(u∗) cos(2ωt)

Here we see why the filtering mechanism is useful: it allows us
to inspect the signal only at certain frequencies that carry the
information we need, in this case J ′′(u∗). To fully do that, we
will further demodulate the signal with sin(ωt) and then apply
low-pass filtering and arrive at the approximation:

L[sin(ωt)H[J(u(t))]] ∼= −1

2
KJ ′′(u∗)ξ(t)

where the sinusoidal terms are all filtered out by the low-pass
filter L[·] because of their high frequency. Now, plugging it in the
definition of ξ(t) and v̇(t) from Equation, we arrive at Equation 3
in Section II-A. Consequently, the error dynamics ξ(t) follows
exponentially stabilizes to zero. Through such frequency-domain
analysis, we see that J ′′(u∗) does not need to be estimated, and
convergence is implicitly guaranteed by following the control law
for u(t) and v(t).
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